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Abstract

We provide a new class of interior solutions for anisotropic stars admitting conformal motion. The Einstein's field equations
in higher dimensional spherically symmetric charged distribution for specific choices of the density/mass functions are
solved. We analyzed the behavior of the model parameters like radial and transverse pressure, density and surface tension.
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1. Introduction

Anisotropy in fluid pressure could be introduced by the
existence of a solid core or by the presence of  type  3A
superfluid  [Kippenhahn and Weigert  (1990)], different
kinds of phase transitions [Sokolov (1980)], pion
condensation [Sawyer (1972)] or by other physical
phenomena.  On  the  scale  of  galaxies,  Binney  and
Tremaine (1987) considered anisotropies in spherical
galaxies, from a purely Newtonian point of view. Other
source of anisotropy, due to the effects of the slow
rotation in a star, has been proposed by Herrera and
Santos (1995). The mixture of two gases (e.g.,
monotonic hydrogen, or ionized hydrogen and electrons)
can  formally  be  also  described   as  an  anisotropic  fluid
[Letelier(1980)]. Dev and Gleiser (2002) investigated the
effect of anisotropic pressure on the properties of
spherically symmetric gravitationally bound objects.
Under full general relativistic treatment, exact solution
for various form  of the equation of state connecting the
radial and tangential pressures are obtained. Herrera et
al. (1984) studied the consequence of the existence of a
one parameter group of conformal motions, for
anisotropic matter. They include that for special
conformal motions, the stiff equation of state =  is
singled out in a unique way, provided the generating
conformal vector field is orthogonal to the four velocity.
Ruderman (1972) showed that nuclear matter may
become anisotropic in the high density region of order
1015 gm/cc, which is expected at the core of compact
terrestrial objects. Though we lack a complete
understanding of the microscopic origin of the pressure
anisotropy,  the  role  of  pressure  anisotropy  in  the
modeling of compact stars is a field of active research.

Rahaman et al. (2010a) provided new class of interior
solution for anisotropic stars admitting conformal
motions. Harko and Mak (2000) obtained the equation
describing the hydrostatic equilibrium of a static
anisotropic general relativistic fluid sphere in higher
dimensional space time with cosmological constant .
Inspired with the earlier works of, Mak and Harko
(2004), Aktas and Yilmaz (2007), Rahaman et al.
(2010b), on anisotropic stars admitting a one parameter
group of conformal motions in four dimensional general
relativity,  in  this  paper  we  look  for  a  new  class  of
anisotropic star solutions admitting conformal motion in
the  frame work of  higher  dimensional  general  theory  of
relativity.
It is well known that to find the natural relation between
geometry and matter through the Einstein’s equations, it
is useful to use the inheritance symmetry. The well
known inheritance symmetry under conformal killing
vectors (CKV) i.e.,

= ,                                (1)
The quantity on left hand side is the Lie derivative of
metric tensor, describing the interior gravitational field
of a compact star with respect to the vector field  and
is the arbitrary function of  r.  It  is a constant then (1)
generates homothetic while = 0 result in killing
vectors. Conformal killing vectors provide a deeper
insight into the spacetime geometry.
This paper is generalization of the work obtained earlier
by Rahaman et al. (2010a) in higher dimensional space
time.
The paper is organized as follows : in section 2, we have
provided the basic equations which describe anisotropic
star admitting conformal motions in higher dimensional
space time. In section 2.1 and 2.2. we solve this field
equations for specific choice of energy density  of the
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form = ( ) ( + 3 ) and mass

= ( ) ( ( )) respectively. Finally some
concluding remark have been made in section 3.

2. Anisotropic stars

To generate a new class of solutions making use of this
symmetry, we choose static spherically symmetric space
time are in the standard form (chosen units are c=1=G)

= ( ) (2)

with = + +
. + ,

, , ,….,( ),( ) = , , , … , ( ), ,

where ( ) and ( ) are yet to be determined.
For an anisotropic matter distribution, with the energy
momentum tensor given by

= , … . , ( ) ,
the Einstein’s equations for the metric (2) are obtained as

8 ( ) + + ( )
 ,                        (3)

   -8 ( ) + + ( )
  ,                       (4)

8 = + ( ) +
( )( ) ( )( ) ,                   (5)

where prime (‘) denotes differentiation with respect to  r.
Now the equation

= ; + ; = , = ( ),                (6)
 for the line element given in (2) generates

= ,                                          (7)
=  ,                                        (8)

= ,                                             (9)
+2 , = ,                                 (10)

where  is a constant.
These consequently imply

=  ,                                        (11)

= ( )   ,                                       (12)

=  +   ,                                 (13)
where  and  are constants of integration. Equation
(11)-(13), help us to rewrite Eqs. (3)-(5) in the form

8 = ( ) [1 ] -  ,                             (14)

8 ( ) + ( )
 ,                               (15)

8 = + ( ) ( )( )
  .                    (16)

2.1. Given density profile: = ( ) + 3

In Dev and Gleiser (2002, 2004) model, anisotropic star
admits two major types of density distribution  =
constant and = r . These two can be constructed in
one  simple  form  as  shown  above.  Here  a  and  b  are
constants which generates various configurations of the
star.  For  ex,  by  choosing  a   =  3/7  and  b  =  0,  one  may
obtain a relativistic Fermi gas. Making use of the density
profile as prescribed by Dev and Gleiser (2002, 2004),
we rewrite Eq. (14) as

( ) + 3 = ( )
,                  (17)

which can be solved easily to yield

=
( )

( ) ( ) ( ) + ( ) ,         (18)

where  is an integration constant. Consequently, we
obtain an exact analytical solution in the form

=  ,                                        (19)

=
( )

( ) ( ) ( ) + ( )  .
                                                                                     (20)
The two pressures are obtained as

= ( ) ( )

( ) ( ) ( ) +

( )
( )

,

(21)

= ( ) ( )

( ) ( ) ( ) +

( ) + ( ) ( )

( ) ( ) + ( )
( )

( )( ).                                                   (22)

The measure of pressure anisotropy is given by

= ( ) ( )

( ) ( ) + ( )

+ ( ) ( )

( ) ( ) + ( )
( ) .        (23)

Here,  corresponds to a force due to the anisotropic

nature of the star. This force will be  repulsive if > 0
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i.e.,  and attractive if < 0. In the present

model,  is given by

=( ) ( )

( ) ( ) ( ) +

( ) +
)

) + ) .

                                                                                              (24)
At the surface of the star r = R, we impose the condition
that the radial pressure vanishes, i.e.,  (r = R) = 0,
which gives

( ) ( )

) ( ) ( ) + )

( )=0.                                                     (25)

From (25) we can find out the value of R.
After differentiating (22) with respect to r, we get the
value of pressure gradient as

( ) ( )

( ) ( )

( ) ( )

( ) + ( ) ( ) + +
( )

.                                                                                (26)
The mass function in this case takes the form

( ) = 2 ( ) = +
)

.          (27)

2.2. Given density profile : ( ) =
( )

( ).

Let us assume a mass function in higher dimension of the
form

( ) =
( )

( ) ,                              (28)
where a and b are two arbitrary constants.
Such a mass function has been found to be relevant in the
studies of compact stars in higher dimension. As the
mass m(r) in (n+2)-dimension is defined as

( ) = 2 ( )  ,                                 (29)
This is equivalent to choosing the density profile in the
form

2( ) ( ) = [( ) ]
( ) .                              (30)

Equation (14) for the above matter distribution takes the
form

( ) = [( ) ]
)( )  ,                     (31)

whose solution is given by

= ( ) )
+ ) .              (32)

Thus the metric functions are obtained as
 ,                                   (33)

( ) )
+ ) .                (34)

Note that the metric functions are regular at the centre if
we set = 0.
The radial and tangential pressures are obtained as

) + )
( ) )

+ ) ,
(35)

= )
( )( ) + ( ) +

( )
( ) + [ )]

( ) )
( ) ) ,         (36)

and the measure of anisotropy is given by
= + ( ) )

+ )

( )
) + [ ]

)
.                                (37)

At the boundary, radial pressure vanishes (  (r  =  R)  =
0), which gives

( )
( )( ) + ( )

) = 0.  (38)

Equation (38) determines the radius R of the star.
We, thus, obtain all the physical parameters in simple
analytic forms. Through energy density is regular
throughout the interior of a star, the two pressures still
remain singular in this model at r = 0 in the framework
of    higher  dimension  space  time.  The  characteristic  of
the model are shown in the following figures (1) to (7) in
the framework of five dimensional space time (i.e., n=3).

Figure 1: The density parameter  is shown against r for
a = 0.1, C = 0.5, C3 =0.1, b=0.03

Figure 2: The radial pressure pr is shown against r for a =
0.1, C = 0.5 , C3 =0.1, b=0.03
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Figure 3: The mass parameter m(r) is shown against r for
a =0.1, 0.2, 0.3, 0.4, C = 0.5, C3 = 0.1, b = 0.01

Figure 4: The conformal parameter (r) is shown against
r for a = 0.1, C =0.5, C3 = 0.1, b = 0.03

Figure  5:  The  anisotropy  =  pt  pr is shown against r
for a = 0.1, C =0.5, C3 = 0.1, b = 0.03

Figure 6: The radial pressure gradient dpr /dr is shown
against r for a = 0.1,C = 0.5,C3 = 0.1,b = 0.03

Figure 7: The force parameter /r is shown against r for a
= 0.1, C = 0.5, C3 = 0.1, b = 0.03

3. Conclusion

This work has generalized to higher dimension the well
known results in four dimensional space time. It is found
that they may be significant difference in principle at
least to analogous situation in four dimensional space
time. We have provided new way of solutions for
anisotropic star admitting conformal motions. These are
obtained by taking the energy density  and mass
verification profiles in two different cases in the
framework of higher dimensional space time. We have
total pressure of the fluid is decomposed into two
pressures terms, the radial pressure pr and transverse
pressure pt . The solutions obtained here are in simple
form and can  be  used  to  study the  physical  behavior  of
compact anisotropic star. For physically meaningful
solutions, it is imperative to study the behavior of
physical parameters like energy density, mass, force and
gradient  pressure  inside  the  star.  In  this  model  all  these
parameters are well behaved as shown in figures (1) to
(7) in the framework of higher dimensional space-time.
However due to the effect of higher dimension the
solutions suffer from a central singularity problem i.e., r
= 0. This work is the generalization of the work obtained
earlier by Rahaman et al. (2010a) in four-dimensional
space-time.
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